
 Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

57

This work is licensed under a Creative Commons Attribution 4.0 International License

AethelmE, HTML5 Game Engine with Multiple
Canvas Elements

Kevin Gunawan
Computer Science Program
Bina Nusantara University

Jakarta, Indonesia

Raymond Bahana
Computer Science Program
Bina Nusantara University

Jakarta, Indonesia

Abstract— Game engine is software which ease the game
development. As the processor power technology evolved and the
HTML5 (HyperText Markup Language 5) specification are
developed, browsers nowadays can natively (without any need for
external plug-in) display animations and multimedia files (audio
and video) using JavaScript as the programming language. Some
of the features which are used in this research are HTML5‘s
canvas and audio elements. The problem is that none of the
existing free HTML5 game engines is able to support multiple
canvas elements. This research will create a game engine, called
AethelmE, which support multiple canvas elements as its unique
feature. This game engine is also able to support sprite
transformation, browsers compatibility, external asset loading,
and audio format compatibility. This research successfully
resulted in creating an HTML5 game engine which supports
multiple canvas elements. It also supports all the scopes, with a
small exception on sound format compatibility. Moreover, this
research conducted a performance comparison testing of multiple
HTML5 game engines, from which can be concluded that multiple
canvas elements does not give significant performance gain
compared to a single canvas.

Keywords—Game engine, HTML5, multiple canvas elements

I. INTRODUCTION
Gaming industry has been an interesting and challenging field

to work on, as it requires technical knowledge and creativity at the
same time. It has a large audience, making the industry both easy
(more people will play the game) and hard (people demand more
features from the game) for the developer. This industry also has a
wide range of technology on which games can be implemented and
played. There are many game platforms, console and non-console,
that exist nowadays. The variety of the game platforms results in
difficulties in developing games, since they have different
frameworks and different language to work on. Thus, in order to
develop a game without taking a long time, it is better for not doing
it from scratch, but instead using an additional layer, which people
usually call a game engine.

The usage of game engine is especially important when it comes
to new technology, such as HTML5. HTML5 is a new standard for
HTML. Its technology is based on HTML, CSS (Cascading Style
Sheets), DOM (Document Object Model), and JavaScript [1]. Since
developers might not be accustomed to it and the technology itself
has a steep learning curve, game engine is necessary to help
developers create games with high quality within a short period of
time.

Several HTML5-based game engines exist, each with
advantages and uniqueness. Some examples are Crafty, Impact,
LimeJS, Cocos2D, EntityJS. Some use JavaScript as their
controller, while others use CSS. Some are GUI (Graphical user
interface)-based, while others acts only as an external library.

These game engines have something in common: they generally
use HTML5‘s new canvas element, and they use only one canvas.
According to Boris Smus [2], using layered canvas will yield a
better performance as opposed to using a single canvas. From this
research, none of the game engines is using multiple canvas
elements as their feature. Therefore, this research proposes a new
approach in creating a game engine which will add support to
multiple canvas elements feature.

II. THEORETICAL FOUNDATION

A. Game Engine
A game engine, by definition, is a core set of technologies

combined into a single software package to accelerate game
development [3]. Game engines let game developers to have more
time to develop the game components rather than the technical
matter, as it provides the technical abstraction. Game engines can
be used in a form of included libraries or a stand-alone editor
application.

An example of a stand-alone game engine which has its own
editor is the Unity game engine. Unity is able to create both 2D and
3D games and has wide access to many format types of assets as it
support models with the .3ds (3DS Max), .fbx (Autodesk), and
.blend (Blender) extensions, making games created with Unity
even quicker because developers do not have much to deal with
model file formats [4].

B. Physic Collision Detection
Collision detection is one of the most basic requirements in

game development, especially in computed physic environment [5].
It checks if an object, 2D or 3D, is touching or overlapping with
another one or more objects. This is important because when the
game is simulating real life‘s physics, objects that are bumping with
each other are definitely respond with a collision reaction, whether
it is moving in opposite direction or exploding. Therefore, collision
checking is a basic feature for game developing.

The importance of collision detection in game development
does not stop there. Even for game which runs at the minimum of
30 frames per second, the collision detection also has to be run thirty
times per second in order to create a real time animation. And so,

 Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

58

This work is licensed under a Creative Commons Attribution 4.0 International License

an efficient and accurate algorithm for collision detection is needed
for developers so processor power is not used up for detection
collision only.

There exist several collision detection algorithms, each with
their advantages and weaknesses. Note that this research will only
limit its discussion on two-dimensional collision detection
algorithms. Moreover, it will only discuss algorithms which are
used inside the research‘s game engine.

The easiest algorithm to detect collision is by using radius. This
algorithm treats all tested object as a circle. The algorithm basically
checks the objects’ position and calculate the distance between the
two. The algorithm then compare the distance with the combined
objects’ collision radius. A collision happened when the distance is
equal or less than the combined radius.

Another type of collision detection algorithm is detection by
using the bounding box. Two object is colliding when their
bounding box are overlapping. The idea of this algorithm is that
calculating collision using box-shaped is easier than using complex
shapes like polygons or stars. This algorithm is divided further into
two parts: the Axis-Align Bounding Box (AABB) and the Oriented
Bounding Box (OBB) [6,7]. These two algorithms are similar in
term of bounding box calculation, but works mathematically
different.

C. <canvas> element
<canvas> element is a new features of HTML5. It enables web

browsers to dynamically draw 2D images with procedural method
[8]. JavaScript is used to script the generated graphic (i.e. drawing
a rectangle or sphere, or draw a bitmap image). Apple was the first
who introduced the canvas functionality, but the use is limited only
for OSX‘s WebKit. Later, other browsers like Gecko browsers and
Opera also implement it on theirs. Not long after that, WHATWG
(Web Hypertext Application Technology Working Group) make
the canvas as a standard for HTML5 [8]. Since <canvas>
implements the rasterized procedural method, when an update
happened inside the canvas (e.g. drawing the next animation frame),
the whole canvas has to be cleared and the new shapes and images
are re-drawn. This differs significantly compared to drawing with
SVG (Scalable Vector Graphic), another new API (Application
program interface) for drawing in HTML5. SVGs are vector- based
image, therefore it consumes less memory and the raw data can be
saved inside the DOM. When an update happened, only the data has
to be changed and the browser will generate the new images
automatically.

D. <audio> Element
<audio> element enables web browsers to play music files,

synthesize sound, and generate/process speech natively without any
need for external libraries and dependencies [9]. Previously, when
a website‘s owner want to put audio (or video) embedded inside
their site, they have to use external plug-in such as Adobe Flash in
order for their multimedia files works on client‘s web browser. With
HTML5‘s <audio> element, browsers can natively play music and
songs, provided that the browser support the sound‘s file format.

III. PROBLEM ANALYSIS
Developing a game requires a lot of resources and preparation.

In order to make one, developers have to plan the gameplay, the
design, the characters. Also, they have to choose the suitable
technology with the targeted game platform and market. It is going
to take longer time if they still need to learn about new technology
(in case they develop the game in new platform) and even longer if

they code the game on low level programming layer. More time will
be allocated for debugging and testing purposes.

In order to deal with those problems, developers commonly use
game engines for creating games. It enables them to create games
with shorter time, because it gives an additional programming layer
of technology abstraction. This additional layer provides ease for
the developers because they do not have to code in low level
programming language. Some basic functionalities which had to be
made manually by developers also sometimes provided by game
engines, such as collision detection, physic engine, embedded audio
engine, and several more.

The mentioned problems above become more visible for the
HTML5 technology because of two things. First, by the time this
paper is written, HTML5 is still an evolving technology. The
HTML5 specification is still a draft and maintained daily by W3C.
Therefore, it‘s hard to create an HTML5 website that‘s fully
compatible with browsers that support old version of HTML5 [10].
Second, browsers have their own implementation of HTML5,
mainly because of the evolving specification. This creates a
separated website implementation for different browsers. An
example of this is the different web audio API developed by Google
and Mozilla. For those reasons, game engines have been a feasible
solution for creating games in shorter time, since developers do not
have to worry about the steep learning curve and they can use the
given additional functionalities. Developers can choose from a wide
range of choices of game engines, differs on what platform they
support, on how difficult to use the engine, on what features can the
engine support, and on what kind of game that the engine can
produce.

A. Existing Solutions
As for HTML5 game engines, there are already a lot of them

exist in the market, starting from the free engines to the paid ones.
Each of them has their own features, advantage, difficulties, and
drawbacks. There are some engines which emphasize on their
lightweight size, such as lycheeJS and Crafty, while others
emphasize on the performance, such as Playcraft Engine and Pulse
[2]. There is also HTML5 engines that already uses GUI for the
editor, such as Construct 2.

However, as far as the author‘s research, none of these engine
support multiple canvas elements, even though using multiple
canvas element have several advantages. According to an article
in.html5rocks.com, <canvas> element‘s performance can be
improved by utilizing several canvases, overlaid on each other [3].
Another advantage is developers can specify canvases‘ position
according to their needs and favor

The existing solutions which this paper will describe are limited
to free HTML5 game engines. Game engines that are used to create
specific game genres (RPG, isometric, classic-style) are also
excluded.

A.1. Crafty

Crafty is a free HTML game engine that utilize <canvas>
element and/or DOM to render the entities‘ graphic. Similar to how
JavaScript handles event, Crafty also use event binding to update
the entities. Furthermore, it support custom events that can be
triggered using the function Crafty.trigger() that will announce the
custom event and trigger all entities that has been bound with that
specific event. The uniqueness of this engine is that it does not use
the usual inheritance concept for the entities. Instead, it uses the
multiple inheritance or trait concepts [11]. To put it roughly, each

 Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

59

This work is licensed under a Creative Commons Attribution 4.0 International License

object in Crafty can get specific traits, depending on what
components given to the object on initialization. So the code:

Crafty.e("2D, DOM, Text")

creates an entity that have the 2D, DOM, and Text components.
Programmers can also create custom components using the
Crafty.c() function.

In order for the engine to recognize the drawing canvas,
programmers can do it two ways. First, by letting the engine to
create the canvas element, automatically by using the function
Crafty.init(). Second, by specifying an existing canvas with an ID
#cr-stage using the function Crafty.viewport.init(). The major
disadvantage of this engine is that it requires the programmers to
understand significant knowledge of JavaScript (about the event
binding and other things) before they can use all of this engine‘s
features

A.2. lycheeJS

lycheeJS is another HTML5 game engine, made by Christoph
Martens. It has a systematic folder structure for the game assets and
resources. This is required because lycheeJS uses the folder position
to determine the namespace and class name. The game engine
package also comes with a game template that‘s ready to be edited,
including the index.html file. lycheeJS also provide an interesting
feature for exporting the game. Using the lycheeJS-ADK (App
Development Kit), a toolchain for this game engine, developers can
export their game to applications that can be natively ran on Linux
Ubuntu/Fedora platform. Previously, the ADK also support
Windows and OSX platforms, but it‘s outdated because of
incompatible libraries and misconfigured gcc compiler [12].

The main drawback of lycheeJS is the steep learning curve. This
engine requires the programmers to understand the concept of
prototype in Javascript. Another drawback is that it has little
extensibility, because all of the resources and folders are already
provided. This also disables the engine for retrieving external
resources (e.g. from other site).

A.3. gameQuery

gameQuery is an HTML game engine that uses jQuery as the
base. The main feature of this engine is the DOM manipulation. So
instead of using the <canvas> element, it uses DOM and CSS as the
image manipulator and renderer. This inevitably broaden the
browser‘s support compared to HTML5‘s canvas element, because
DOM technology was invented before <canvas> element. Also, it
supports tile mapping, box collision detection, and
callback/function registration for periodic calls. This periodic
callbacks is what updates the whole game. For example, to register
the updating function, this function is used:
$.playground().registerCallback(function(){/
Updating code/})

gameQuery‘s weakness is that it‘s dependant to other Javascript
library, which is jQuery, so the file size of the engine is sacrificed
for rich features that jQuery can give.

A.4. Construct 2

Construct 2 is an HTML5 game engine made by Scirra. There
are three versions of Construct 2 available for developers; free
edition, which have a lot of limitation, but good enough to create a
simple game, the personal edition, which is targeted to indie game

developers, and the business edition, which is mainly used by for-
profit game organizations.

Construct 2 has a distinguished quality compared to other
HTML game engines: developers do not have to code to create
games. Some coding logics still exists, but in a form of click-and-
drag. Sprites and entities can be drag- and-dropped to the stage,
called layout, while the game logic is put on event sheet. The basic
component of display is called a sprite object, and behaviors can be
added to supported objects, sprite included. This behavior objects
can be defined to set common game functionalities for specific
objects. An easy example of this is the physic behavior. Sprites that
have the physic behavior will automatically move downward, as if
it‘s affected by gravity, and others that don‘t implement it will not
be affected.

Construct 2 also supports AJAX request, collision detection,
multiple animations, path finding and AI (from behavior), and some
webGL effects. Using the behavior-concept for objects, Construct 2
enables an wide open extensibility support for custom objects and
behavior. This engine can also export the game to platforms other
than web browsers, such as Windows 8, Windows Phone 8, iOS,
and Android. Apart from the rich features of Construct 2, it still has
several disadvantages. Since the editor is GUI-based, it has quite
large installer, more than 100 MB. Developers also have to pay
quite sum of money for creating game without limitation. The editor
is also not cross platform.

A.5. Traffic Cone

Traffic Cone is a HTML5 game engine made by Joseph
Mordetsky [13]. It also utilize two HTML5 <canvas> elements in
order for the engine to work. It supports sprite animations, tile-
based world support, tile mapping, intelligent draw routines, and
basic support for isometric path finding, AI, and collision detection.
Additionally, Traffic Cone can easily create isometric display using
specified images. Using the statement:
new GameWorld(250, 250, 73, 73,
GAME_WORLD_STYLE_ISOMETRIC)

it will create a GameWorld object that defaults to isometric style
of drawing. It has several constants that can be used to draw
isometric world according to developer‘s need, for example GAME
_WORLD_CELL _UNDERLAY for floor tiles that will be drawn
under character sprites, and GAME _WORLD_ CELL_OVERLAY
for pillar/wall which will be drawn over the character sprites.

Another feature of Traffic Cone is the composite sprite.
Composite sprite is “a sprite that instead of being made of a single
sprite sheet is instead made of multiple images”. It is useful when
the game has a collection system, where different collections will
be displayed differently on the stage. It comes with two types of
composite sprites, the simple and complex one. The simple
composite sprite means that the sub-sprite positions are all the same,
so the engine doesn‘t have to deal with image‘s offset. While the
complex composite sprite takes offsets, width, height of the image
for determining the frames of the sub-sprite.

The drawback of Traffic Cone engine is that there‘s not much
resources to learn how to use this engine. Not even the official
website has documentation for this engine, although there are some
examples that can be followed.

 Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

60

This work is licensed under a Creative Commons Attribution 4.0 International License

B. Proposed Solution
Judging from the existing game engines, only Traffic Cone that

uses two <canvas> elements, while other engines only use one or
none (but instead use DOM). When used carefully, multiple canvas
could create a significant performance gain compared to using only
a single <canvas> [14]. The concept is similarly used in Traffic
Cone, when there are more than one <canvas>, the engine can
determine which <canvas> should be updated and which one does
not. This technique can be expanded more, by determining which
part of the canvas that should be cleared before being redrawn.

When using a single <canvas>, the engine definitely have to
clear the whole canvas before redrawing it. Although the
performance cost is quite small, this cost will be accumulated
quickly because typically, images is redrawn 30-60 times per
second. This will impact more on computers with low-end
hardware. Therefore, managing which <canvas> and specifying
part that should be cleared will definitely give a much better
performance.

This research will propose a solution for the HTML game
engine problem, a new game engine called AethelmE, which
support multiple <canvas> elements. This engine will be developed
using JavaScript programming language.

IV. DESIGN AND DEVELOPMENT
Figure 1 shows the main classes that forms the game engine.

The main class of the engine is the AethelmE class. In order to
minimize the chance of mistyping the engine’s name, a shorthand
class is also provided, which can be accessed by using the AE class.
With this shorthand class, developers can create a new instance of
AethelmE by using either new AethelmE() or new AE().

Fig. 1 Main Class Diagram

Note that all custom engine classes are using the word AE in
front of the class name. This is done to prevent the class name clash
with Javascript’s reserved words, existing class name, and global
variable names. This also applies to other engine’s class name to
maintain consistency and also enable the engine to be developed
further without having to worry about global namespace.

 Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

61

This work is licensed under a Creative Commons Attribution 4.0 International License

Fig. 2 DisplayList Class Diagram

Figure 2 shows the relationship between classes that handle
rendering, with AE.DisplayList class as the center. As seen in the
diagram, AE.DisplayList aggregates and stores two classes, which
are AE.Stage and AE.Object2D. Also, this class does not only
aggregate, but also pairs them so that each 2D object know on which
<canvas> element it should render to.

A. AethelmE Class
This class is the main class of the game engine. Each instance

this class saves all resource managers. It also saves a single instance
of AE.DisplayList. There are also two functions which deal with
error happening in engine. These two functions are the error and
warning handlers. When the function AethelmE.error() is called,
then the errorHandler function will also be called, with an instance
of AE.Error is passed as the argument. Accordingly, when the
function AethelmE.warn() is called, then the warningHandler
function will be called with an instance of AE.Error is passed as the
argument. AethelmE provides a default behavior for both
errorHandler and warningHandler. Figure 3 And 4 show this
behavior.

Fig. 3 errorHandler Default Behavior Activity Diagram

Fig. 4 waningHandler Default Behavior Activity Diagram

This class also provide the error() and warn() function, which
developers can use to generate an error in-game. As a matter of fact,
this two functions are only a function wrapper which create an
instance of AE.Error, and then passed it to the corresponding
handler. There are also log() function which can prints out message,
as defined by logHandler function.

B. AE.Error Class
This class is a wrapper class which contains information when

an error happened inside the engine. This error includes invalid
argument type, underflow or overflow value, void operations, and
accessing invalid asset. This class is mainly used inside AethelmE
class, especially for the warningHandler and errorHandler
functions, in which this class is passed as argument.

 Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

62

This work is licensed under a Creative Commons Attribution 4.0 International License

C. AE.Loader Class
The class AE.Loader is a utility class which gives ease for

developers to download external resources, such as images, sounds,
and text files. When this class first initialized, it is passed several
arguments at the same time. First is the URL of the resource. The
next argument is the asset‘s name. This name will be used to
differentiate assets with another. The next two arguments are
functions, which will be called when something happened with the
resource loading. As the name implies, onComplete function will
be called when the asset is fully downloaded, while onError
function will be called when there‘s an error while the data is
downloading. The next argument, target, is pretty tricky, as it deals
with how function in Javascript works. target is the object that is
bound to both onComplete and onError function.

The next argument is the engine, which determine which
AethelmE engine the asset will be stored to. If it is not specified, the
first created engine will be used. This argument is especially
important because there can be multiple AethelmE engines exist on
a single page (although it is not necessary), so AE.Loader has to
know on which engine the downloaded data will be stored. Also,
there‘s a single method exist in this class, which is the load()
function. When this function is called, AE.Loader will start loading
the resource. This step can be skipped if the static attribute autoLoad
is true (which is the default value). While this attribute is true, the
asset will be automatically loaded as soon as the AE.Loader object
is initialized and instantiated.

D. AE.MultiLoader Class
The class AE.MultiLoader is a utility class, similar to

AE.Loader, but is able to load multiple resources at once.
AE.MultiLoader aggregates multiple AE.Loader objects to in order
to load multiple assets. When an object of AE.MultiLoader is
instantiated, it received several arguments at the same time and they
are similar to AE.Loader‘s arguments. The first argument, urls, is
an array that contains strings of the assets‘ URL. The second
argument, names, is also an array that contains strings which will
be paired to the asset‘s URL when it‘s done loading. The next three
arguments, onAllComplete, onError, and onEachComplete, are
functions which will be called when the matching event happened.
The final argument, target, is the exact same as the target argument
on AE.Loader; It will be bound on the three functions
(onAllComplete, onError, and onEachComplete) to define the
object that the keyword this will be referring to.

E. AE.ImageManager Class
The class AE.ImageManager stores images that are used inside

the game engine. The class itself does not need any argument to be
initialized. The image is stored when the function add() is called.
This function requires several arguments to be executed. First is the
name, which is a string that differentiates the stored images. The
next argument is the url, which is a string that defines the image‘s
address. The next two arguments, onComplete and onError, is the
callback functions which will be called after the corresponding
event happened. The way function load works is by using the
existing event listener inside the Image class. It handles when the
images is already downloaded and when there‘s error when loading
it. Using this listener, AE.ImageManager can use the past functions
from the argument to the appropriate event.

The downloaded image is stored on the images attribute. That it
is not an array, but instead an empty Javascript object. The image is
stored in a pair of key-value format, which uses the name argument
as the key. A problem could arise when the name is already taken

and paired with another Image. This is where the isStrict attribute is
used. isStrict is a static attribute, which defines the behavior when
there is a name clash. The default value is false, which will make
the engine create a warning when there‘s a clash on the key.

F. AE.AssetManager Class
The class AE.AssetManager stores all other files which cannot

be supported by AethelmE. This includes text files, JSON, and
XML. Similar with other two manager classes, the assets attribute
saves all assets in a key-value pair, with the name is stored as the
key and the downloaded data is stored as the value.
AE.AssetManager also has the static isStrict attribute, which
defines whether it will create an error or a warning when there is a
name clash inside the assets attribute. It also provide the add(), get(),
and remove() function.

In order to download the data with unknown format,
AE.AssetManager uses the Javascript‘s AJAX technology. AJAX
uses the XMLHttpRequest class to download resources
asynchronously. This data can be retrieved in a text format or binary
format, depending on developer‘s need. For AE.AssetManager, the
XMLHttpRequest uses only POST request, as it has larger data
length limit compared to GET requests.

G. AE.SoundManager Class
This class stores any audio files that is downloaded and used by

the engine. The class constructor has no argument, and it only
initialize the sounds attribute. AE.SoundManager stores the audio
file in a key-value pair inside the sounds attribute. When the add()
function is called, it requires the name attribute, which it will be
used for the key, and the downloaded file from the url attribute will
be stored as the value.

The static attribute isStrict is also present in this class to prevent
the engine to replace stored audio with the same name. When the
value is false, the engine will create warning when a the name
already existed, and will still replace the audio file. When the value
is true, it will generate an error and depending on how the error
handler work, it will or will not replace the audio file.
AE.SoundManager class also provide function to retrieve the audio
data using get() function, and to delete and free the memory for
unneeded audio data using the remove() function. The remove()
function returns a boolean value, indicating whether the deletion is
successful or not.

H. AE.Sound Class
The AE.Sound class acts as a wrapper class for the HTML5‘s

native Audio class. As seen from Figure 1, it has the audio attribute,
which will save an instance of Audio class. The reason Audio class
has to be bound inside another class is because it has no detection
support whether the audio has completed the download completely.
It can only detect streaming status, which can stop downloading
before the data is fully downloaded. This is unfavorable for audio
in games, because it will create choppy sounds when users are
playing the game, especially those who have slow internet
connection, and will definitely impact the gaming experience. In
order to circumvent this problem, the AE.Sound class make use of
the existing Audio‘s event handlers to detect whether the data has
downloaded completely.

Figure 5 shows AE.Sound class‘ constructor. AE.Sound class
uses two existing event handler from the native Audio class. They
are the progress event and the canPlayThrough event. The progress
event is called when the Audio is in the process of downloading,
while the canPlayThrough is called when the browser thinks that

 Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

63

This work is licensed under a Creative Commons Attribution 4.0 International License

the downloaded data is long enough (but not yet complete) for the
browser to play the audio. Using these two events, AE.Sound create
a custom loading function which can detect when the audio has
completely downloaded.

Fig. 5 AE.Sound constructor Activity Diagram

As seen on Figure 6, this loading function is dependent to the
native Audio event. As the event continuously happening, the
function will be executed again and again, until the audio is
downloaded completely. In general, there are two main conditional
statement inside the function. The first one checks whether the
audio‘s metadata has already loaded. The Audio class loads the
audio‘s information first before it actually stream the audio data.
This information includes audio‘s title, duration, artist, album,
genre, etc

The second statements checks if the streamed data already
reached the end of the audio file, by comparing the end time of the
streamed data with the total duration. If it has not reach the end, it
will set the current time to the end of the streamed data. This is
needed because Audio‘s implementation are different across
browsers. The browser may continue the streaming even if the
current time is still at point zero, but there are browsers which will
stop the stream when the downloaded data is long enough for the
user to hear. It will continue streaming when the current time is
getting closer to the end of buffered data. So, in order to ensure all
browsers behave the same, this function will actively set the current
time to the end so all browsers will continue the streaming. If the
data is fully downloaded, the current time will be reset to point zero,
and the function will call the passed complete function. Then, the
function will end its execution. AE.Sound class also support several
functions for audio playback, using the play(), pause(), and stop()
functions.

Fig. 6 AE.Sound onLoading function

I. AE.DisplayList Class
The AE.DisplayList class is the center class of sprites and

stages, as it acts as the storage, manipulator, and rendering of all 2D
objects in AethelmE engine. The class‘ constructor has no
argument, because it only initialize its attributes, stages and objects.
These two attributes stores all references to stages and objects that
are initialized and used inside a single instance of AethelmE. As the
names imply, the stages object stores all references to existing
stages and canvas elements, while objects object stores all
references to instantiated 2D objects. The way that these two objects
store the references is unique, because both of them uses key-value
pair scheme. Since JavaScript cannot use an object instance as an
object‘s key, both of the objects uses the stage‘s name as the key.

The AE.DisplayList class also provides functions for
manipulating stages and the objects inside it. Most of these
functions are automatically called by other classes, so developers
doesn't have to bother with AethelmE‘s object structure. The most
basic one is the addStage() function, which will add the reference
in the stages attribute and create an empty array in objects with the
stage as the key.

J. AE.Vec2 Class
AE.Vec2 class is a utility class which saves two numeric values

and can be manipulated as a two-dimensional vector.

This class only has a single attribute, which is the value array.
It only saves two numeric values, with zero as the default values.
This class is mainly used for AE.Object2D, AE.Text, and AE.Sprite
class to define values that come in pairs. It is also frequently used
for AE.Sprite‘s collision detection, with several vector calculation
functions that helps with vector projection.

The AE.Vec2 class also provide several functions which is
commonly used for vector calculations. The first function is the
length() function, which returns the vector length. This class also
provide the sqrLength() function which, as the name imply, return
the squared length of the vector. Developer can (and encouraged to)
use the sqrLength() function when the accurate vector length is not
needed. For vector arithmetic calculations, this class also provides
several functions with two variants, the method ones and the static
ones.

 Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

64

This work is licensed under a Creative Commons Attribution 4.0 International License

K. AE.Stage Class
This is the class that contains all attributes and functions related

to canvas element, updating, and rendering functions. While the one
that actually renders is the AE.Object2D class and the one that call
its render() function is the AE.DisplayList, AE.Stage is the one
responsible of when to render the stage itself. Thus, AE.Stage is the
one that calls the AE.DisplayList‘s renderStage() function. For
rendering purposes, it has the private attribute updaterID, which
saves the callback ID for the current rendering function call. It also
has the lastTime and elapsedTime attribute.

As seen in Figure 7, AE.Stage constructor provides two ways to
set the canvas attribute. The normal way is to pass the canvas
element itself. For developer‘s ease, this argument also accept a
string argument, which is the ID name of the canvas element, and
the engine will automatically retrieve the element with the specified
ID.

Fig. 7 AE.Stage Constructor Activity Diagram

AE.Stage also has the input attribute, which is an instance of
AE.Input. For updating purposes, it also has the updater and
needToRender attributes.The needToRender attribute is one of the
most important feature of AE.Stage as this flag attribute is the one
that determine whether the stage has to be re-rendered or not. This
attribute has a default value of false, which means that the stage will
not be rendered, and the last rendered image will stay as it is. This
value will only change to true under certain conditions, such as a
new object is added, an object is removed from the stage, or any of
the object‘s visual attribute is updated. With the existence of this
attribute, the stage can be rendered as needed so it will not consume
as much processor resource as usual.

There‘s also a static Boolean attribute called autoStart which
determine whether the stage is automatically started when an
AE.Stage instance is created. Its default value is true. When it‘s set
to false, all newly instantiated AE.Stage instances will not be
started, and the start() function has to be called manually by
developers. For manipulating the stage‘s workflow, this class
provide two functions, the start() and stop() functions.

L. AE.Input Class
AE.Input class is a utility class that manage user input. Even if

this class is created for AethelmE engine, it actually can support
other HTML elements to a certain degree. This fact can be seen on
AE.Input‘s constructor, as it requires oneargument, which is a
DOMElement. As long as the specified element can receive user
input, specifically mouse and keyboard input, the element can be

attached with this class. Instances of AE.Stage will automatically
have an instance of AE.Input inside it which is attached to the
canvas element, so developers can use it automatically.

This class has several attributes, namely the target which save
the attached DOM element, and both onMouseEvent and
onKeyboardEvent which save the developer‘s custom callback
function when mouse and keyboard events happened. This class
uses Javascript‘s addEventListener() function to attach the callback
functions to the elements. When the saved callback function in
onMouseEvent and onKeyboardEvent is called, these functions will
receive several arguments, depending on the event types. To save
the processor power, these input events will not be active by default.
In order for the element to receive user input, is has to be enabled
using the enableMouseEvent() for mouse events and
enableKeyboardEvent() for keyboard events.

M. AE.Object2D Class
AE.Object2D class is the parent class of all objects that are

rendered and drawn on the stage. The two classes that inherit from
AE.Object2D are AE.Text which define a text on the canvas and
AE.Sprite which define a graphical render using images. Inside this
class, its save the engine‘s display list reference in displayList and
also the stage reference in the stage attribute. It saves the engine‘s
display list because of the addToStage() and removeFromStage()
functions are the wrapper functions of AE.DisplayList‘s
addObjectToStage() and removeObjectFromStage() respectively.
As such, this class will need to know the active display list
reference. It also need to know the stage reference where the object
will be rendered to, because it will need the canvas 2D context in
order for the object is rendered, and the stage is the one who keep
the canvas element reference.

N. AE.Text Class
AE.Text class is a children class that inherits from

AE.Object2D. It define a text on a canvas. The written text will be
the string from the string attribute. The align attribute is used to
define the text. The font attribute is used for determining the text‘s
font and style. Its type is string because it uses CSS‘s rule to
determine the font. For example, to create a serif font with the size
of 12 pixels, the font attribute will contain the string “12px serif”. It
also applies to common styles, such as bold and italic. To create a
bold text with previous values, the font attribute will contain the
string “bold 12px serif”. The color attribute contain string that
defines the text‘s color. It can contain the color’s name or can also
be an RGB code in an rgb() function or hexadecimal value. The
baseline attribute is useful for determining the vertical anchor point
where AE.Object2D‘s position attribute points to. The common
values for this attribute are top, middle, and bottom.

This class also provides the static attribute default, which
consist of the default values of other attributes. When the class
AE.Text is instantiated, it will initialize the attribute values with the
ones inside the default object. This object is useful for developers
who want to have a common font and style for all rendered text,
without any need to change the attribute one by one. This class also
have the render() function, which take a canvas context as the
argument. When this function is called, it will render itself on the
provided canvas context.

O. AE.Sprite Class
AE.Sprite is the basic class for displaying images on canvas. It

inherits from AE.Object2D class. It uses the image that is saved
inside AE.ImageManager. When AE.Sprite is instantiated, it
requires an argument, the imageName which is the image‘s name

 Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

65

This work is licensed under a Creative Commons Attribution 4.0 International License

inside AE.ImageManager. It also has an optional argument, which
is the engine, which define on which AethelmE engine the image
will be taken from and the sprite will be saved to. For sprite
manipulating, there are several attributes exist inside this class, such
as the angle which define the sprite‘s rotation angle from the center.
Unlike the mathematical angle, this engine‘s angle zero is pointed
to Y- positive-axis, or number 12 on a clock. When it‘s
incremented, it will rotate clockwise just as a clock would.

AE.Sprite also provides attributes which automates common
animations. The animationMode attribute will contain an animation
constant which defines the animation type, while the
currentAnimationMode attribute defines the current active
animation. There are also animationFrames which is an instance of
AE.Vec2 and defines from which frame to which frame the
animation will play. For collision detection, AE.Sprite uses several
methods subsequently. It support distance -based collision and
object bounding box (or Separating Axis Theorem) collision. These
functions are saved inside the static array attribute
collisionFunction.

To check the collision detection, AE.Sprite has the isHitWith()
function, which takes another instance of AE.Sprite for the
argument. This function does the collision detection by calling
saved collision functions inside the static collisionFunction
iteratively. First, it will call the distance-based collision function.
When the result is false, the function returns the value false, since
there‘s no need to continue the detection (objects that are far apart
logically wouldn‘t collide at any sprite‘s part). If the returned value
is true, then the detection continues to the next algorithm, which is
the SAT.

Then, the final returned value would be whatever value returned
from this last function.

AE.Sprite also has the destroy() function. It will remove the
sprite from the stage visually and programmatically. It means that
not only the sprite will not be rendered, but it also will be removed
from the array inside the active AE.DisplayList object.

P. AE.AnimationMode Class
AE.AnimationMode is a utility class that contains all constants

for AE.Sprite‘s animation attributes, especially animationMode and
currentAnimationMode. When the value is set to animationMode,
it represent the sprite‘s whole animation. It is different when the
value is set to currentAnimationMode, because it only represents
the current flow of animation. The constant NONE means that
there‘s no active animation, while the value ONCE means the
animation only run from the start to end and the animation stops.
The constant LOOP makes the animation loops infinitely when the
frame reached the end. The constant REVERSE means the
animation is running backward (from end to start). Finally, the
constant PING_PONG makes the animation loops forward and
backward continuously.

V. TESTING AND IMPLEMENTATION
This research created two tests. The first is the engine‘s unit

testing. It means that the test will make sure the classes‘
functionalities are working properly. The second test is to compare
a similar game between multiple free HTML5 game engines and
AethelmE. The aspect compared are the CPU and GPU usage. The
target of this second testing is to compare the games performance
on engines with single drawing viewport and engines which support
multiple drawing viewports.

A. Unit Testing
AethelmE engine works on most major internet browsers.

Tested using Google Chrome, Mozilla Firefox, Opera, and Internet
Explorer 9, AethelmE supports error handling, external asset
loading (using AE.Loader and AE.MultiLoader class), a vector
wrapper class, image and text rendering on HTML5 <canvas>
element, and also detecting both mouse and keyboard input using
AE.Input class. The aforementioned features are fully compatible
with all of the tested browsers.

The problem lies on the AE.Sound class, as the class is not
properly working on several browsers. There are two main
problems of this class. First, is because this class cannot detect audio
format compatibility automatically. This problem can be seen on
Firefox‘s sound unit testing. As seen on the Figure 8, Mozilla
Firefox can properly play audio with supported format (signified
from the green SUCCESS result), but the test for detecting
incompatible format failed, or did not work to be precise. Normally,
when the test failed, the result box‘s color should change to red and
the word FAILED showed, but this is not the case with the above
test. The default text inside the box was still shown, and there was
no change at all, even when it was left after sometime.

When the test is conducted more in-depth using Firefox‘s
debugging plug-in, Firebug, it turned out that when incompatible
audio format is detected internally, the browser is automatically set
for not downloading the file. This explains why the test freeze in the
middle, because the end callback function is never called and the
result() function was never executed, making the test hanged
without any precise result. Since this problem is caused by the
browser implementation, there‘s not much that can be done for
AethelmE, except to modify the game engine to match how the
browser behave.

Fig. 8 Sound Unit Testing on Mozilla Firefox

The second problem of AE.Sound class is that it does not work
at all on both Opera and Internet Explorer (e.g. no audio is played
at all). As seen on Figure 9 and Figure 10, none of the audio unit
testing are working on Opera and Internet Explorer 9, as there are
no SUCCESS or FAILED message inside the result box. This no-
result occurrence can only mean that (similar to the previous
problem) the end callback is not called at all, making the result()
function is not executed.

 Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

66

This work is licensed under a Creative Commons Attribution 4.0 International License

Fig. 9 Sound Unit Testing on Opera

Fig. 10 Sound Unit Testing on Internet Explorer

B. Performance Comparison Testing
For testing the performance of multiple HTML5 game engines,

this research focused more on comparing the performance on
refreshing a single drawing viewport and refreshing two or more
drawing viewports. The test was using ASUS Notebook UL80VT
Series with the following specifications: 64-bit Windows 7 Home
Premium, Intel® Core™ 2 Duo Processor SU7300 @1.3 GHz,
NVIDIA GeForce G210M and 4.00 GB RAM

The game specification for this test is described as follows:

• A sprite which have four-frames looping walking
animation. For engines which support multiple drawing
viewports, this sprite will be put on the foremost viewport.

• A two-part background image which scrolls only to the
right. For engines which support multiple drawing
viewports, these background sprites will be put on the
rearmost viewport.

• It should be able to retrieve user inputs.

• When right arrow is pressed, the walking sprite moves to the
right. When it is already at the right edge of the viewport,
scroll the background to the right.

• When the left arrow is presses, the walking sprite moves to
the left. When it is already at the left edge of the viewport,
do nothing.

• Record the CPU and GPU performance while the game is
running in several states: idle, moving (walk), and scrolling
background.

While the game seems pretty simple, this test can check how
significant multiple drawing elements can impact the processor and
graphic card‘s performance, because there are elements that should
be updated every frame and there are some that do not need to be
updated that frequently. This performance measuring is also
dependant to browser‘s implementation of image rendering, both in
DOM and <canvas> element, as different browsers can have their
own way of rendering bitmaps on the screen.

Before started the testing (when the system on standby): 10%
CPU usage and 0% GPU usage. Table 1 shows the result of the
performance testing with three different states.

TABLE 1. Performance Testing Result

 Idle Walk Scroll

lycheeJS
CPU 33% 35% 35%
GPU 28% 31% 28%

gameQuery
CPU 15% 25% 52%
GPU 11% 25% 30%

Traffic Cone CPU 45% 48% 58%
GPU 33% 34% 30%

Crafty
CPU 34% 37% 77%
GPU 45% 47% 36%

Construct 2
CPU 30% 35% 36%
GPU 50% 35% 35%

AethelmE
CPU 31% 36% 34%
GPU 29% 30% 32%

The Figure 11 shows the comparison of the CPU usage between

the tested HTML5 game engines. Higher bar means more processor
usage is observed for the specific engine, which is not good.
AethelmE is able to have stabilized CPU performance when tested
in multiple states, on par with LycheeJS and Construct 2.
gameQuery has the highest performance when the player is idle and
walking (means that the background is still static), but become
much worse when the background is scrolling.

 Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

67

This work is licensed under a Creative Commons Attribution 4.0 International License

Fig. 11 CPU Usage Chart

Traffic Cone has the worst CPU performance in average, even
though the engine also uses multiple <canvas> elements. Crafty has
the same problem with gameQuery, whose performance worsens
when the background is scrolling, and it is also the one that uses up
the most CPU usage among the engines. Based on this test, it seems
that multiple drawing elements are not the main aspect for having a
performance gain compared to single drawing element. It might still
help, but the result is not that significant.

Figure 12 shows the comparison of the GPU usage between the
tested HTML5 game engines. Higher bar means more graphic card
usage is observed for the specific engine. Please note that this result
cannot be fully used to compare how good the engines are, because
the GPU usage are dependant to the browser‘s rendering
implementation. This graph only acts as a complement result for
CPU usage comparison.

Fig. 12 GPU Usage Chart

As seen from the figure, almost all engines use generally the
same amount of GPU usage, except for several cases. Crafty uses
the most GPU usage in average, while gameQuery uses very little
GPU calculation for idle state. Construct 2 has the most irregular
GPU usage for the idle state. When the benchmarking game is
started, Construct 2 uses only about 36% GPU usage, which is
almost the same with other engines‘ usage. When the game is left
for a while, the usage suddenly increased up to 50% and became
steady on this number. This is not the case with the other two states,
as it only has around 35% GPU usage.

VI. CONCLUSION

This research has successfully created a functional HTML5
game engine prototype which support for multiple canvas elements,
called AethelmE. This research also did a performance comparison
between several free HTML5 game engines and AethelmE, using a
benchmarking game. Judging from the performance comparison
result, it can be concluded that multiple drawing viewports (e.g.
multiple canvas elements) does not have much significance in
performance gain, because engines with single drawing element can
have the same performance rate with engines with multiple ones.

REFERENCES

[1] T.N.Sharma, P.Bhardwaj and M.Bhardwaj. (2012, Sept.). Differences
between HTML and HTML5. International Journal of Computational
Engineering Research. [Online]. 2(5), pp. 1430-1437. Available:
http://www.ijceronline.com/papers/Vol2_issue5/AR02514301437.pdf

[2] B.Smus. (2011, Aug.). Improving HTML5 canvas performance. HTML5
Rocks. [Online]. Available: http://www.html5rocks.com/en/tutorials/
canvas/performance/

[3] J.Park, "Study of network game engine technology for distribute
processing," M.S. thesis, Dankook University, Yongin, South Korea,
2008.

[4] Unity. “Unity – Fast Facts”. http://unity3d.com/company/public-
relations/

[5] M.Teschner, S.Kimmerle, B.Heidelberger, G.Zachmann, L.Raghupathi,
A.Fuhrmann, M.P.P.Cani, F.Faure, N.Magnenat-Thalmann, W.Strasser
and P.Volino. 2005. Collision detection for deformable objects. Computer
Graphics Forum [Online]. 24(1), pp. 61-81. Available:
https://hal.inria.fr/inria-00539916/document

[6] G.van den Bergen, “Efficient collision detection of complex deformable
models using AABB trees,” Journal of Graphics Tools, vol. 2, pp. 1-13,
1997.

[7] S.Gottschalk, M.C.Lin and D.Manocha, “OBB-tree: a hierarchical
structure for rapid interference detection,” Proceedings of SIGGRAPH,
vol. 96, pp. 171-180, 1996

[8] D.Geary, “Essentials,” in Core HTML5 Canvas – Graphics, Animation,
and Game Development, Crawfordsville, IN: Prentice Hall, 2012, pp 1-7.

[9] S.Fulton and J.Fullon, “Working with Audio, in HTML5 Canvas”, 2nd
ed. Sebastopol, CA: O’Reilly, 2013, pp 381-387.

[10] E.Castro and B.Hyslop, “Introduction in HTML5 and CSS3”, 7th ed.,
2012, Berkeley, CA, Peachpit Press, 2012, pp xvi.

[11] Crafty, “Crafty - Creating your first Crafty game”, 2010, [Online].
Available: http://craftyjs.com/tutorial/bananabomber/create-a-game#
components

[12] C. Martens, “lycheeJS - Getting Started: Setup lycheeJS-ADK”,
[Online]. Available: http://martens.ms/lycheeJS/docs/guide-setup-
lycheeJS-ADK.html

[13] J. Mordetsky, “Trafficcone”, 2012, Available: http://github.com/j03m/
trafficcone

[14] IBM Developer Works, Available: https://www.ibm.com/developer
works/ library wa-canvashtml5layering/

